
Parallel Computation of Three-Dimensional Flows
using Overlapping Grids with Adaptive Mesh

Refinement

Bill Henshaw

Centre for Applied Scientific Computing,

Lawrence Livermore National Laboratory,

Livermore, CA USA 94551

Don Schwendeman

Department of Mathematical Sciences,

Rensselaer Polytechnic Institute, Troy, NY 12180

SIAM Conference on Parallel Processing for Scientfic Computing,

Atlanta, GA March 2008.

Background: Schlieren image from a detonation hitting a collection of moving rigid cylinders.

1

Acknowledgments

Supported by
Department of Energy, Office of Science

MICS Program: Mathematical, Information, and Computational Sciences

SciDAC: Scientific Discovery through Advanced Computing

Current Overture developers (www.llnl.gov/casc/Overture)

Kyle Chand

Bill Henshaw

2

Introduction:

We are interesting in numerically solving well-posed initial-boundary-value

problems

∂u

∂t
= L(u,x, t), t > 0, x ∈ Ω,

u(x, t) = u0(x), t = 0, x ∈ Ω,

B(u,x, t) = 0, t > 0, x ∈ ∂Ω.

in complex three-dimensional domains Ω ∈ R
3.

♦ We use overlapping (overset/Chimera) grids to discretize the domain Ω and

finite-difference or finite-volume methods to approximate the PDE.

♦ If the solutions exhibit localized multiscale behaviour such as sharp fronts,

interfaces, shocks, reaction zones etc. then the use of adaptive mesh refinement

(AMR) can reduce the time-to-solution or allow higher-resolution results for

given computational resources.

3

Background: Overlapping grids for solving Partial Differential Equations

• A set of structured grids that overlap.

• Solutions matched by interpolation.

• Body fitted grids permit accurate treatment

of boundary conditions.

• A grid generator (Ogen) is used to

automatically connect component grids, but

component grid generation is not yet fully

automatic.

• Grids can be rapidly generated as boundaries

move.

• Efficient high-order accurate methods are

possible.

• Algorithms must take into account multiple

grids and interpolation points.

Ω

∂Ω

physical boundary

�� �� �� �� �	
� �

�� �� �� �� �� �� ��

�� �� ! "# $% &'

() *+ ,- ./ 01 23

45 67 89 :; <=

>? @A BC DE

FG HI

JL
KN
MP
OL
QN
RL
SN
TN
UN
VN
W

X Y Z

[\] ^ _ ` a b c d
e

f
g

h i j k l m n o p q r s

t
u
v
w
x
y

z
{
|
}
~
�

G1
G2

� � interpolation

�� unused

� � ghost point

Mapping: x = G2(r)

Claim: If designed properly, an algorithm for overlapping grids can be

asymptotically as fast and memory efficient as an algorithm for a single Cartesian

grid.

4

Block Structured Adaptive Mesh Refinement and Overlapping Grids

♦ Refinement patches are generated in the parameter space of each

component grid (base grid).

♦ Refinement patches are organized in a hierarchy of refinement levels.

♦ Error estimators determine where refinement is needed.

♦ AMR grid generation (Berger-Rigoutsos algorithm) builds refinement patches based

on the error estimate.

♦ refinement grids may interpolate from refinement grids of different base grids.

♦ The key issue is efficiency.

refinement level 1

refinement level 2

base grids

5

Parallel Adaptive Mesh Refinement on Overlapping Grids

We have recently developed the parallel capabilties for AMR on overlapping grids.

Parallel Issues:

♦ Overlapping grids: parallel grid generation for the initial grid; updating

interpolation points on AMR grids, parallel interpolation.

♦ AMR: Error-estimation, regridding, interpolation.

♦ Parallel Distributions of Arrays and Load balancing

♦ I/O and Graphics

Reference:
WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using

Overlapping Grids with Adaptive Mesh Refinement, UCRL-JRNL-236681, Submitted for

publication, 2007.

WDH., D. W. Schwendeman, Moving Overlapping Grids with Adaptive Mesh Refinement for

High-Speed Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005) 744-779.

6

Distributing Overlapping and AMR grids in Parallel

G1

G2

G3

G4

p=0

p=1

p=3

p=4

p=5

p=4

p=6p=7

Each base grid or refinement grid can be distributed over a contiguous range of

processors. In this example the base grid G1 is distributed over processors [0, 1], the

base grid G2 over processor [4], the refinement grid G3 over processors [3, 4, 5] and the

refinement grid G4 over processors [6, 7].

7

The AMR Time-Stepping Algorithm

PDEsolve(G, tfinal)

{ t := 0; n := 0;

un
i

:= applyInitialCondition(G);

while t < tfinal

if (n mod nregrid ≡ 0) // rebuild the AMR grids

ei := estimateError(G,un
i
);

G∗ := regrid(G, ei);

u∗

i
:= interpolateToNewGrid(un

i
,G,G∗);

G := G∗; un
i

:= u∗

i
;

end if

∆t := computeTimeStep(G,un
i
);

un+1
i

:= advancePDE(G,un
i
, ∆t); // take a time step

interpolate(G,un+1
i

); // interpolate overlapping grid points

applyBoundaryConditions(G,un+1
i

, t + ∆t);

t := t + ∆t; n := n + 1;

}

8

Error-Estimation

The error-estimator we generally use is

ei =

m
X

k=1

ek,i + τi , (1)

where the error in solution component k (e.g. ρ,u,v,...) is estimated as weighted sum

of first- and second-order undivided differences,

ek,i =
1

3

3
X

α=1

„

c1

sk

|∆0αUk,i| +
c2

sk

|∆+α∆−αUk,i|

«

. (2)

When solving the reactive Euler equations, we add τi, which is an estimate of the

truncation error in the sub-cycled chemistry terms.

♦ The error-estimator is smoothed using a Jacobi iteration on the entire overlapping

grid so that the error propagates onto neighbouring grids. Refinement grids thus

include a buffer region.

9

AMR Regriding

♦ Every few times steps (e.g. every 8 times steps) the error is estimated and a new set

of AMR grids are found. We use a modified Berger-Rigoutsos algorithm.

AMR Interpolation

♦ AMR boundary-interpolation : during each time step, ghost points on AMR grid

boundaries are interpolated from grids at the same level or a coarser level.

♦ Refinement grid transfer step : when the locations of the AMR grids are

recomputed, the solution values from the new grid-hierarchy are interpolated from the

solution values on the old grid-hierarchy

Remark: Our first implementation of AMR regriding and interpolation has great room

for improvement to reduce the number of messages being passed.

10

Load-Balancing

The aim of load-balancing is to distribute the computational work-load amongst the

processors in a nearly even fashion.

Constraints:

♦ Each grid can be distributed across a contiguous range of processors (a constraint

imposed by the version of Multiblock PARTI that we use).

The Algorithm is based on a best fit decreasing bin-packing algorithm:

♦ starting from the largest grid, split the grid into a number of regularly shaped pieces

of some estimated optimal size.

♦ pack the pieces of the grid onto a contiguous set of processors. Go to the next

largest grid and repeat.

♦ Check the final load balance. If poorly balanced, repeat the process but split the

grids into more pieces.

11

Load-Balancing

Notes:

♦ The target load balance can always be achieved by splitting each grid across all

processors.

♦ Communication costs are not explicitly taken into account.

♦ Any variation in computational cost per grid point is currently not taken into account.

12

Validation: Solving an advection-diffusion problem with parallel AMR

We consider the solution of the initial-boundary-value problem for the

advection-diffusion equation:

∂u

∂t
+ a · ∇u = ν∆u + f(x, t), t > 0, x ∈ Ω,

u = u0(x), t = 0, x ∈ Ω,

u = g(x, t), t > 0, x ∈ ∂Ω,

where u = u(x, t) is a scalar function, a = a(x, t) ∈ R
3 is a given velocity, ν > 0

is a constant diffusivity and f(x, t) is a given forcing function.

These are discretized on curvilinear grids using the mapping-method, resulting in

the system of ODEs,

d

dt
Ui(t) + a · ∇hUi(t) = ν∆hUi(t) + fi(t),

These equations are advanced in time using a second or fourth-order

Runge-Kutta method, RK2 or RK4.

13

The Method of Analytic Solutions (aka Twilight-zone flow)

For the advection-diffusion IBVP
8

>

>

>

>

<

>

>

>

>

:

∂u

∂t
+ a · ∇u = ν∆u + f(x, t), t > 0, x ∈ Ω,

u = u0(x), t = 0, x ∈ Ω,

u = g(x, t), t > 0, x ∈ ∂Ω,

We can make any smooth function ū(x, t) an exact solution by choosing

f(x, t) = ūt + a · ∇ū − ν∆ū, u0(x) = ū(x, 0),

g(x, t) = ū(x, t), for x ∈ ∂Ω.

We often choose ū(x, t) to be a low degree polynomial since our approximations are

often exact in this case on Cartesian grids.

14

A good exact-solution for tesing AMR is the translating pulse

ū(x, t) = c0 exp
˘

− (|x − xc(t)|/c1)
2¯

,

xc(t) = x0 + v0t.

Above: a pulse moving through a sphere-in-a-box grid. Refinement grid boxes are shown.

15

Advection-diffusion: moving pulse in a sphere-in-a-box

Notation: G
(j,l)
s : j: base grid resolution factor, l: number of additional refinement levels.

nr : refinement ratio, Ej,1 : maximum error.

Grid nr Nproc Nstep Nregrid Ngrid Npoint Ej,1

G
(1,1)
s 2 32 48 24 (3, 23) 2.0e+5 2.84e−2

G
(2,1)
s 2 32 120 60 (3, 49) 1.1e+6 6.91e−3

G
(3,1)
s 2 32 376 188 (3, 128) 6.7e+6 1.70e−3

Parallel AMR results for runs involving the sphere-in-a-box grid with the moving pulse solution.

Convergence rate σ = 2.0 (second-order accurate)

Grid nr Nproc Nstep Nregrid Ngrid Npoint Ej,`

G
(1,2)
s 2 8 126 64 (13, 53) 6.0e+5 7.25e−3

G
(1,2)
s 2 32 126 64 (13, 53) 6.0e+5 7.25e−3

G
(1,1)
s 4 16 187 47 (3, 21) 6.6e+5 7.25e−3

G
(1,1)
s 4 32 187 47 (3, 21) 6.6e+5 7.25e−3

G
(2,1)
s 2 1 120 60 (3, 49) 1.1e+6 6.91e−3

G
(2,1)
s 2 32 120 60 (3, 49) 1.1e+6 6.91e−3

G
(4,0)
s – 8 166 – (3, 3) 4.9e+6 6.76e−3

G
(4,0)
s – 32 166 – (3, 3) 4.9e+6 6.76e−3

The effective resolution is the same for all runs and we observe that the numerical errors, Ej,`,

are approximately equal.

16

Solving the reactive Euler equations.

∂u

∂t
+

∂

∂x1
F1(u) +

∂

∂x2
F2(u) +

∂

∂x3
F3(u) = H(u),

where

u =

2

6

6

6

6

6

4

ρ

ρv

E

ρs

3

7

7

7

7

7

5

, Fn =

2

6

6

6

6

6

4

ρvn

ρvnv + pen

vn(E + p)

ρvns

3

7

7

7

7

7

5

, H =

2

6

6

6

6

6

4

0

0

0

ρR

3

7

7

7

7

7

5

.

E =
p

γ − 1
+

1

2
ρ|v|2 + ρq,

♦ The numerical approximation uses a second-order extension of Godunov’s method.

♦ The stiff source term in the reactive case is handled using a Runge-Kutta

error-control scheme.

17

AMR grids for shock diffraction by a quarter sphere

Density and AMR grids for the quarter-sphere problem at t = 0.6 (left) and t = 1.4

(right). (The grid is coarsened by a factor of 4 for illustrative purposes.)

Notes: Euler equations computed with cgcns: two-levels of refinement factor 2, 32

processors, from 6 to 1827 grids, a maximum of 55 million grid points.

18

Density on the sphere

h = 1
40

, 1
80

, 1
160

, 1
320

G
(b=2,l=1,r=2)
q , h = 1

40

G
(b=4,l=1,r=2)
q , h = 1

80
G

(b=4,l=2,r=2)
q , h = 1

160

Grid convergence study for shock diffraction by a quarter sphere

19

Parallel AMR, shock diffraction by a sphere - strong scaling results

k Grid N
(k)
point

N
(k)
proc N

(k)
point

/N
(k)
proc N

(k)
step Tk Sk

0 G
(4,0)
q 2.01e+6 1 2.01e+6 617 15.2 1.00

1 G
(4,0)
q 2.01e+6 2 1.00e+6 617 7.77 0.98

2 G
(4,0)
q 2.01e+6 4 5.02e+5 617 3.96 0.96

3 G
(4,0)
q 2.01e+6 8 2.51e+5 617 2.09 0.91

4 G
(4,0)
q 2.01e+6 16 1.26e+5 617 1.09 0.87

5 G
(4,0)
q 2.01e+6 32 6.27e+4 617 0.587 0.81

6 G
(4,0)
q 2.01e+6 64 3.14e+4 617 0.341 0.70

Strong scaling results with no AMR. Tk = CPU time in seconds per step. The parallel scaling
factor Sk should be 1 for perfect parallel scaling.

k Grid N
(k)
point

N
(k)
proc N

(k)
point

/N
(k)
proc N

(k)
step Tk Sk

0 G
(2,1)
q 1.61e+6 1 1.61e+6 645 11.8 1.00

1 G
(2,1)
q 1.61e+6 2 8.05e+5 645 6.23 0.95

2 G
(2,1)
q 1.61e+6 4 4.02e+5 645 3.23 0.91

3 G
(2,1)
q 1.61e+6 8 2.01e+5 645 1.82 0.81

4 G
(2,1)
q 1.61e+6 16 1.01e+5 645 1.02 0.72

5 G
(2,1)
q 1.61e+6 32 5.03e+4 645 0.591 0.62

Strong scaling results with AMR. The current parallel AMR interpolation functions send too
many small messages; these need to be merged.

20

Cgcns parallel AMR example: detonation initiation in a T-shaped pipe

Notes: Reactive-Euler equations computed with cgcns: one level of refinement factor 4,

4930 time steps, 48 processors, from 5 to 682 grids, a maximum of 100 million grid

points (effective resolution of 400 million).

21

h = 1
80

l = 1, nr = 4

h = 1
160

l = 1, nr = 4

h = 1
240

l = 1, nr = 4

Grid convergence study for a detonation in a T-pipe

22

Summary

• We have developed an approach for solving time dependent PDEs using

overlapping grids and AMR on parallel, distributed-memory computers.

• Each base grid or refinement grid can be independently distributed across one

or more processors. A modified bin-packing algorithm is used as the

load-balancer.

• The accuracy of the approach was validated by solving advection-diffusion

equation with the method of analytic solutions.

• The approach was further validated by solving the Euler-equations and reactive

Euler-equations.

• The method showed reasonably good parallel scaling up to 64 processors.

Further work is required to the initial implementation to reduce communication

costs.

• Future work: moving grids and AMR in parallel.

23

